Twin Cell Ultrasonic Cement Analyzer

Part No. 120-51

Instruction Manual

Updated 10/26/2018
Ver. 7.0

OFI Testing Equipment, Inc.
11302 Steeplecrest Dr. · Houston, Texas · 77065 · U.S.A.
Tele: 832.320.7300 · Fax: 713.880.9886 · www.ofite.com

©Copyright OFITE 2015
Table of Contents

- Intro .. 2
- Description .. 2
- Features ... 2
- Specifications .. 3
- Components .. 3
- Safety ... 5
- Setup .. 6
 - Hardware .. 6
 - Software .. 7
- Software .. 8
- Operation ... 11
 - Temperature Profile ... 11
 - Cell Cap Assembly .. 13
 - Preparing the Test Cell .. 14
 - Connecting the Cell ... 16
 - Performing the Test ... 17
 - Removing the Test Cell ... 19
- Maintenance .. 20
 - Cleaning the Test Cell ... 20
 - Changing a Fuse .. 21
- Appendix ... 22
 - Calibration .. 22
 - Calibration Archive ... 23
 - Multiple Instruments .. 24
 - Serial to USB Converter .. 25
 - Manual Temperature Control .. 27
 - Electrical System Grounding ... 30
 - Troubleshooting .. 31
 - Photos ... 34
 - Cell Diagram ... 36
- Warranty and Return Policy .. 37
By measuring the change in velocity of an acoustic signal, the Ultrasonic Cement Analyzer provides a continuous non-destructive method of determining compressive strength as a function of time.

The cement slurry to be tested is placed in heating jacket with temperature and pressure adjusted to simulate downhole conditions. An acoustic signal is then transmitted through the cement sample. As the strength of the cement increases over time, the acoustic signal travels faster through the sample.

A computer running customized Windows® software measures the transit times of the signal over time and interpolates the compressive strength values. This data is available in real time on-screen and is also stored in an Excel® spreadsheet for easy graphical viewing and printing.

The Twin Cell UCA features two test cells in a single enclosure. Both units share electrical power; air, water, and drain plumbing; and PC to UCA connectivity. All other systems (heating, pressurization, etc.) are completely separate.

- Cement samples are not destroyed
- Programmable temperature control (up to 400°F or 204.4°C)
- Self-venting regulators provide extensive pressure control (up to 5,000 PSI or 34.5 MPa)
- Data is available instantly on screen and is automatically converted to Excel® spreadsheet format
Specifications

Instrument:
- Size: 24" × 18" × 12" (61 × 46 × 30 cm)
- Weight: Approximately 70 lb (31.8 kg)

Requirements:
- Air Supply: 100 PSI (690 kPa) Recommended, 150 PSI (1,035 kPa) Maximum, ¼" NPT Connector
- Water Supply: 40 – 100 PSI, 40° – 100°F, ¼" NPT Connector
- Power Supply:
 - Electronics: 230 – 240 Volt, 50 – 60 Hz, 2 Amp, Fuse: T2A, 250V
 - Heaters: 230 – 240 Volt, 50 – 60 Hz, 8 Amp, Fuse: T8A, 250V

Computer:
- Windows XP or higher
- RS-232 Serial Port (or Serial to USB Adapter)
- Minimum Screen Resolution: 1,280 × 680

Environmental Conditions:
- For indoor use only
- Maximum Altitude: 2,000 m (6,562 ft)
- Temperature: 5° – 40°C (41° – 104°F)
- Maximum Relative Humidity: 80% for temperatures up to 88°F (31°C) decreasing linearly to 50% at 104°F (40°C)

Only use replacement parts that have been supplied by OFITE.

Components

#120-25-043 Relief Valve, Stainless Steel
#120-50-TR Transducer, Set of 2
#120-50-008 Stainless Steel Hose, 38"
#120-50-039 Wrench, Box End, ½"
#120-50-040 Wrench, Box End, ⅝"
#120-50-041 Wrench, Strap, 18"
#120-51-90 Set of Transducer Cables
#120-51-1 Cell Body
#120-51-2 Bottom Cell Cap
#120-51-3 Top Cell Cap for UCA Test
#120-51-019 Heater, 550 Watt
#120-51-021 Fill Gauge
#120-51-025 Filter, Inline, ¼", 7 Micron, Stainless Steel
#120-51-025-1 Element Kit for Inline Filter, 7 Micron
#120-51-031 Wrench for Cell Cap, Adjustable
#120-51-047 Spring for Transducer
#120-59-077 Hose, Low Pressure, 6'
#120-59-078 Hose, Stainless Steel, 6'
#120-90-033 Air Filter
#122-075-1 Fuse, 8 Amp, 5 mm × 20 mm
#123-011 Test Cell O-ring, 75 Durometer
#123-024 Acoustic Couplant
#130-75-71 Monitor
#130-75-74 Desktop Computer
#130-79-15 Serial Cable
#220-10A-EURO Power Cord, European
#220-15A-USA Power Cord, USA

Optional:
#120-51-SP Spare Parts Kit for Twin Cell UCA
 #120-51-019 Heater, 550 Watt, 240 Volt, Qty: 2
 #120-51-020 Thermocouple Assembly, Qty: 2
 #122-073 Fuse, 2 Amp, 5 mm × 20 mm, Qty: 6
 #122-075-1 Fuse, 8 Amp, 5 mm × 20 mm, Qty: 6
 #123-011 O-ring for Test Cell, Qty: 120
 #123-024 Acoustic Couplant, Qty: 4
Safety

<table>
<thead>
<tr>
<th>Explanation of Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution: Risk of Danger - This symbol directs the operator to consult the instruction manual for safety related warnings. (ISO-7000-0434) Whenever this symbol is used on the equipment, the user must consult the manual to determine the nature of the hazard and any actions which have to be taken.</td>
</tr>
<tr>
<td>Hot - This symbol indicates that a surface may be hot to the touch.</td>
</tr>
<tr>
<td>Shock Hazard - This symbol indicates a risk of electrical shock.</td>
</tr>
<tr>
<td>Note - This symbol will indicate important notes and helpful hints for the operation of the equipment.</td>
</tr>
<tr>
<td>Tip - This symbol is used to identify operational information and best practices to obtain the most reliable data.</td>
</tr>
<tr>
<td>Caution: Note - This symbol is used to indicate statements in the manual which warn against actions which may cause damage to the equipment during routine service or maintenance.</td>
</tr>
</tbody>
</table>
1. Carefully remove the instrument from the crate and place it on a flat, stable surface. Make sure to allow for adequate air flow around the unit, especially near the vents on the sides.

To ensure personal safety, always use proper lifting techniques.

Position the unit such that the user can quickly disconnect plugs in case of an emergency.

2. Make sure all switches are off and all pressure knobs are turned completely counterclockwise.

3. Connect the AIR, WATER, and DRAIN connectors on the back of the unit to their appropriate source and plug in the power cords.

Make sure the “Coolant Drain” is suitable for high temperature discharge.

4. Turn the “Main Power” switch on.

5. Connect the UCA to the PC with the supplied serial cable.

For computers without a serial port, a serial to USB converter is available (#130-79-19). See page 25 for more information.
Before you begin your test, you must prepare the PC to record the data.

1. Turn on the PC and UCA.
2. Open the software by double-clicking the icon on the desktop.
3. Click Utilities → Setup.

“COM Port” - The COM port the device is connected to.

“Temp Unit” - °F or °C

“CS Unit” - PSI or MPa

“UCA” - Identifies the unit generating the graph. This field is helpful when multiple units are generating graphs.

“Archive Path” - The location to save the data files

“Logo Path” - Select a logo (.JPG format) to print on the graph at the end of the test.

“Strength @”, “Strength 2 @”, “Strength 3 @” - Enter a time period in each of these three fields. At the end of the test, the compressive strength at these three times will print on the graph.

“CS #1”, “CS #2”, “CS #3” - Enter a compressive strength value in each of these fields. When the cement reaches that compressive strength, the software will record the elapsed time and print it on the graph.

“Print to Printer” - When this option is on, a graph of the test results will automatically print to the printer when a test is complete.
Software

The software has a set of 6 tabs.

The **Cell 1 Info** and **Cell 2 Info** tabs shows the current UCA test configuration and a graph of the temperature profile.
The **Cell 1 Chart** and **Cell 2 Chart** shows a graph of the test while it is running.

“Elapsed Time” - Time since the test began (HR:MIN)

“Temperature” - Temperature within the test cell. (°F or °C, depending on the settings in the Setup screen)

“Transit Time” - Time required for the sound wave to travel through the sample (Microseconds)

“Compressive Strength” - Calculated compressive strength of the sample (PSI or MPa)

“Acoustic Impedance” - Calculated acoustic impedance of the sample. Mostly used for well logging

All charts in the UCA software can be manually scaled to show more or less detail. To manually scale a chart:

1. Right-click on the X or Y axis and uncheck “AutoScale X” or “AutoScale Y”.
2. Double-click the minimum value on the axis. Type in a new value.
3. Double-click the maximum value on the axis. Type in a new value.
4. The chart will now only display values between the new minimum and maximum.
The **Dashboard** shows graphs for both cells along with current test data.

The **Log Data** tab shows the raw test data.
The UCA Software includes a Temperature Profile Builder. Here you can create a custom temperature profile for your test.

If you prefer to build a temperature profile manually using the Eurotherm controls, select “MANUAL” from the “Temperature Profile List” on the Cell Info tab and refer to page 27 for instructions on programming the Eurotherm.

1. Select “Temp Profile Builder” from the “Utilities” menu.

2. Either select a test to edit from the list on the left-hand side of the screen, or click “New Test” to build a new test.

3. Enter a test name.

4. Click the “Add” button to add a step. As you add steps, the graph below will change to reflect the new profile. There are three Step Types:

 a. **Hold** - This will hold the current temperature for a set number of minutes. You will be prompted for the hold time.

 b. **Ramp** - This will increase the temperature up to the target in a set number of minutes. You will be prompted for the ramp time and target temperature.

 c. **Step** - This will increase the temperature up to the target as fast as possible. You will be prompted for the target temperature.

5. Click the “OK” button to add the step.

6. Make sure the “Hold Indefinitely” option is checked. With this option turned on, the test will run until you click the “End Test” button. If this option is not checked, the test will end when all the steps in the Temperature Profile are complete.
7. Click the “OK” button to exit the Temperature Profile Builder. The new Temperature Profile will now appear in the “Temperature Profile List” on the UCA information tab.

8. Once the temperature profile is built, select Operate → Load Cell Info. Here you can enter all the necessary test information in advance, before preparing the cement sample.

Most of these fields are optional. The information in them will display in the data file at the end of the test.

The following fields are required:

Test Name - Each test must have a unique test name. The software uses this field to name the data file.

Slurry Density - The software uses this field to calculate the correct compressive strength.

Cement Density - The software uses this field to calculate the acoustic impedance.
1. Apply a thin layer of high-temperature grease to the inside surfaces of the two cell caps. Wipe off any excess grease.

2. Apply high-temperature grease to both cell cap o-rings (#123-011).

3. Place an o-ring in the grooves of each cell cap.

4. Make sure the transducers and the transducer holes in the cell caps are clean and free of debris. They can be cleaned with a rag or paper towel. Alcohol can also be used if further cleaning is necessary.

5. Apply a thin coat of an ultrasonic couplant to the two transducers.

 When applying the couplant, apply only the smallest amount necessary to allow for the couplant to be spread out in a very thin layer, evenly over the face of the transducer. Applying too much couplant can interfere with the integrity of the signal that is either transmitted or received by the transducers.

6. Place the top transducer into the hole in the top cell cap. Compress the spring and place the spring holder over it. Tighten the screw with a 3/16” allen wrench to secure the spring holder in place.
Preparing the Test Cell

The cell body and both cell caps were manufactured and pressure tested together. All three pieces are serialized. Before assembling the test cell, make sure all three pieces have the same serial number.

For a complete diagram of the test cell, refer to page 36.

1. The test cell is labeled to indicate which end is the top and which is the bottom. Additionally, you can identify the bottom of the cell by removing both caps and examining the grooves beneath the threads. The end with the smaller groove is the bottom of the cell.

 The interior of the cell has a taper with the narrow end at the top and the wide end at the bottom. A hardened cement plug can only be pushed out of the cell from the top.

2. Apply a thin layer of high-temperature grease to any surface that will be in contact with cement. This will make cleaning easier when the test is complete.

3. Carefully screw the bottom cell cap onto the test cell.

 The cell cap should turn smoothly in the test cell threads. If you encounter resistance, stop turning and unscrew the cap slightly. Then continue turning until the cap is completely tightened.
4. Turn the test cell over and begin filling with the cement slurry. Place the fill gauge on top of the test cell. Fill the cell until the cement touches the bottom of the fill gauge.

5. Carefully screw the top cell cap into the test cell, just as you did with the bottom cell cap.
1. Carefully place the cell into the heating jacket.

2. Align the cell as shown below.

3. Screw the ½" connection on the supply line to the bulkhead connector. Leave the connection slightly loose for now.

4. Screw the ⅝" connection on the high pressure supply line to the port on the test cell. Use a wrench to tighten it completely.

5. Now use a ½" wrench to tighten the supply line to the bulkhead connector completely.

6. Screw the thermocouple into the ⅝" port on the cell cap and tighten it hand tight. Plug the thermocouple into the port on the unit cabinet.

7. Plug the transducer into the port on the unit cabinet.
Operation

Performing the Test

Use of this equipment in a manner not specified by the manufacturer may impair the protections provided by the equipment.

1. In the software, program a temperature profile for each test (see page 11).

2. Assemble the test cell (see page 13), load it into the heating jacket and make all the necessary connections (see page 16).

3. Make sure the Cell Pressure Regulator is closed (counterclockwise), the Isolation valve is in the “Off” position, and the “Cell Water” valve is in the “Operate” position.

4. Slowly turn the “Cell Water” valve to “Fill”.

 Watch for water to leak from the thermocouple. When the water starts to leak, immediately tighten the thermocouple with a wrench to seal the cell. This will ensure that all air has been purged from the cell.

5. Turn the “Main Power” and “Pump” switches on.

6. Turn the “Pump Pressure” regulator clockwise to increase the pump pressure. Set the pressure above the maximum pressure of your test.
7. Slowly turn the “Cell Pressure Regulator” clockwise to set the cell pressure.

Add pressure to the cell in 1,000 PSI increment. At each increment, wait to ensure pressure is holding. Observe the “Cell Pressure” gauge. If the pressure begins to fall, release pressure and check for leaks in the plumbing. Once set, you should not need to adjust the pressure for subsequent tests.

8. Once the pressure is set, it is time to start the test.

Go to the “Cell Info” tab in the software. Select a temperature profile from the Temperature Profile List. If you prefer to program the Eurotherm manually, select “MANUAL” from the list. Click the “Start Test” button. The selected temperature profile will stay highlighted throughout the test.

9. After clicking the “Start Test” button you have one more opportunity to enter information about the test. Refer to page 12 for more information about the entering test information.

When you click the “OK” button, the test will begin.

Solid particles and air bubbles within the cement slurry can adversely affect the results of your test. The first Transit Time reading should be at least 10 µs. If it is less than 10 µs:

a. Wait a few minutes to see if the problem corrects itself.

b. If the transit time remains below 10 µs, restart the test by clicking “Stop Test” and then “Start Test”.

c. If the problem persists, remix the slurry and start the test again. To avoid this problem, carefully follow the mixing procedure in API Specification 10.

10. Turn the “Heat” switch on.

11. If you are running a manual temperature profile, push the “RUN/HOLD” button on the temperature controller to begin heating. Verify the “RUN/HOLD” light is on to ensure the program is running.
The data file will be automatically saved in the folder specified on the “Setup” screen.

1. If a manual temperature profile is being ran, push the “Run/Hold” button on the controller and hold it until both lights are off.

2. Turn the “Heat” switch off.

3. Turn the “Cool” switch on and allow the test cell to cool completely.

4. When the cell has cooled, turn the “Pump” and “Cool” switches off.

5. Slowly release the cell pressure by turning the “Cell Pressure” regulator counterclockwise.

 Always release the pressure very slowly to prevent pulling cement into the plumbing.

6. Turn the “Water Control” valve to “Drain”. Water will begin to drain from the cell and out the drain port on the back of the unit.

7. Release the pump pressure by turning the “Pump Pressure” regulator completely counterclockwise.

 If both “Cell Pressure” regulators are completely closed, the pump pressure will not drain. Simply open one of the “Cell Pressure” regulators enough to release the remaining pressure.

8. Unscrew and remove the high-pressure line from the cell cap and the instrument cabinet.

9. Unplug the thermocouple and transducer.

10. Lift the cell out of the heating jacket.

 When removing the test cell, pay special attention to the transducer and make sure it doesn’t pull off of the end of the transducer cable with the cell.

 Use caution. The test cell may contain a small amount of air at high temperature and/or pressure.
The test cell must be cleaned immediately after every test. Any cement left in the test cell will harden and could damage the equipment. Clean all surfaces of the test cell with soap and water.

Remove all o-rings and seal rings and clean them individually. Carefully inspect them and discard any that show damage or wear.

The cement in the cell will be solid. It may be necessary to press the cement block out. Follow the procedure below:

1. Remove both cell caps and pour off any excess water.

 If the cell caps on the test cell will not turn, use a rubber mallet and strike the top and bottom of the test cell.

2. Remove the cement plug from the cell by pressing from the top down.

3. Clean all surfaces of the test cell with soap and water.

 Do not use any type of decontamination or cleaning agents as they may cause a hazard as a result of a reaction with parts of the equipment or with material contained with in. If there is any doubt about the compatibility of a decontamination or cleaning agent please contact OFITE Technical Support.
Maintenance
Changing a Fuse

If one of the main systems on the UCA (main power, fan, heater, pump, and cooling solenoid) is not working, then you may need to check the fuses.

1. Removing the back panel on the UCA and inspect the terminal block which holds the fuses. They are labeled as follows:

2. If a fuse for a particular system is blown, a red LED light will come on below the blown fuse's housing.

3. Unplug the power cord leading to the UCA.

4. Depress the tab on the bottom of the fuse housing and flip the housing up.

5. Open the door on the side of the fuse housing.

6. Replace the blown fuse.

7. Close the door on the fuse housing and push the housing down back into place.

8. Plug the power cord back into the UCA.

9. Check to ensure the system is working again.

<table>
<thead>
<tr>
<th>Internal Fuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse 1</td>
</tr>
<tr>
<td>Fuse 2</td>
</tr>
<tr>
<td>Fuse 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Receptacles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
</tr>
<tr>
<td>Heaters</td>
</tr>
</tbody>
</table>
The UCA unit should be calibrated initially upon install. It should then be calibrated whenever any part of the test cell, transducers, control card or software are changed.

1. Begin by filling the test cell with distilled water and placing it in the unit as described in the “Preparing the Test Cell” section on page 14.

2. Wait for the sample temperature to reach 70° ± 2°F (21.1° ± 1.1°C).

 If the sample temperature is outside this range, transit time may be different than expected.

3. Click the “Set Xmitter On” button on the “UCA Info” tab in the software. Wait 10 seconds.

4. Click Utilities → Calibrate UCA.

5. The transit time should be 15–19 µsec (at 70°±2°F). If the transit time is within the acceptable range, click “OK” to save the calibration and continue.

 If the transit time is not within this range, it could be an indication that the transducers are failing or the transducer cables are damaged. Inspect and clean the transducers as well as the transducer cables and connections. Check the transducer springs for weakening or wear. If the transit time is still out of range, then you may need to get replacement parts for the transducers, cables, or springs.

 If you notice signal strength declining over time, this is an indication that the transducers are wearing out and should be replaced. A weak signal may have an adverse effect on test results.

 If the software displays an error message, contact OFITE for support.

6. Click the “Set Xmitter Off” button to turn off the transmitter.
The UCA software stores all calibration data from prior calibrations. To view data from a previous calibration, select “Calibration Archive” from the “Utilities” menu. A list of previous calibrations will appear in a window to the left. Click on a calibration record and export to view the data.

A final prompt will appear to indicate when the file has exported successfully.
It is possible to control multiple UCAs from a single computer. To setup the software for multiple UCAs, repeat the following procedure for each instrument.

1. Plug each instrument into a separate serial port on the computer.

2. On the computer, navigate to the “C:\Program Files (x86)” folder.

3. Locate the “UCA” folder and select it.

4. Hold down the CTRL key and then hit C. Then hold down the CTRL key and hit V. This will create a duplicate of the folder called “UCA - Copy”.

5. Choose a name to identify the new instrument.

6. Rename the new folder with the name of the instrument.

7. Locate the program file (.exe) inside the folder and rename it with the name of the instrument.

 For convenience, create a shortcut to this file on the desktop.

8. Open the software using the new program file.

9. Change the “Archive Path” to a new folder. See page 7 for instructions.

 Each instrument must have its own Archive Path.
Appendix
Serial to USB Converter

The UCA communicates with the PC via a serial (RS-232) port on the back. For computers without a serial port, a serial to USB converter is available (#130-79-19). However, before using the serial to USB converter with the UCA, the Latency Timer must be adjusted.

1. Connect the converter to both the UCA and the PC.

 The PC will try to automatically download and install the driver. If the automatic install fails, go to http://www.ftdichip.com/Drivers/VCP.htm to download and install the driver manually.

2. Open Device Manager on the computer.

 a. Click the Start Menu.

 b. In the “Run” or “Search Programs and Files” field, type devmgmt.msc and press Enter.

3. Under “Ports (COM & LPT)” find the entry for “USB Serial Port”.

4. Right-click “USB Serial Port” and select Properties.

5. Go to the “Port Settings” tab and click the “Advanced...” button.

6. Change the “Latency Timer (msec)” setting from 16 to 8.

7. Click OK.
Appendix
Manual Temperature Control

The Eurotherm temperature controller allows you to program a temperature profile for your test. This profile will be divided into at least two segments. Each segment represents either a change in temperature or a period of time to hold the current temperature.

The four buttons along the bottom of the display provide access to the temperature controller parameters. To program a test:

1. Press the “PAGE” button until the display reads “Prog List”.
2. Press the “SCROLL” key to select the parameter you want to change.
3. Press either arrow key to set the value for the parameter.
4. Repeat steps 2 and 3 until all parameters are set.

The PID and other internal settings have been optimized for this instrument. Do not change anything other than program parameters.

For more information, refer to the Eurotherm instruction manual.

The first group of parameters will be the same for every test. Do not change them:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prg1</td>
<td>1</td>
</tr>
<tr>
<td>Hb</td>
<td>OFF</td>
</tr>
<tr>
<td>Hb.u</td>
<td>0.0</td>
</tr>
<tr>
<td>Rmp.u</td>
<td>min</td>
</tr>
<tr>
<td>Dwl.u</td>
<td>min</td>
</tr>
<tr>
<td>Cyc.n</td>
<td>1</td>
</tr>
</tbody>
</table>

Temperature Controller

![Temperature Controller Diagram]
1. Begin by defining the first segment of the test.
 a. Press the “SCROLL” key until “Seg” appears on the display.
 b. Press either arrow key to select “1” (segment 1).

2. The first parameter is “Type”.
 a. Press the “SCROLL” key to select “Type”.
 b. The available options are “rmp.r”, “rmp.t”, or “dwell”. Press either arrow key to select one.

 Rmp.r programs the controller to steadily increase the temperature by a specified rate (degrees per minute). If you choose this option, the next parameter will be “Tgt” (target temperature) and then “Rate” (degrees per minute).

 Rmp.t increases the temperature over a specified time interval (minutes). If you choose this option, the next parameter will be “Tgt” (target temperature) and then “Dur” (duration in minutes).

 Dwell holds the temperature at its current set point for a specified length of time. If you choose this option, the next parameter will be “Dur” (duration in minutes).

 c. Press the “SCROLL” key to select the remaining parameters (target temperature, rate, or duration).
 d. Press either arrow key to select the options for each parameter.

3. Now define the second segment.
 a. Press the “SCROLL” key until “Seg” appears on the display.
 b. Press either arrow key to select “2” (segment 2).

4. Continue this process with each segment in the test.

5. When you reach the last segment, set the “Type” to “end”. The next parameter will be “End.t”.
 If you choose “**sop**”, the heat will be turned off and the test ended.
 If you choose “**dwell**”, the heat will be held at the current temperature indefinitely.
Example 1:
Heat the sample at 2.5° per minute and stop at 150°. Hold at 150° for 180 minutes and then stop the heat.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prg</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hb</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Hb.u</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Rmp.u</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>DwL.u</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>Cyc.n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seg</td>
<td>1</td>
<td>Segment 1</td>
</tr>
<tr>
<td>Type</td>
<td>rmp.r</td>
<td>Increase temperature at a specified rate</td>
</tr>
<tr>
<td>Tgt</td>
<td>150</td>
<td>Heat to 150°</td>
</tr>
<tr>
<td>Rate</td>
<td>2.5</td>
<td>Increase temperature at 2.5° per minute</td>
</tr>
<tr>
<td>Seg</td>
<td>2</td>
<td>Segment 2</td>
</tr>
<tr>
<td>Type</td>
<td>dwell</td>
<td>Hold on the current temperature</td>
</tr>
<tr>
<td>Dur</td>
<td>180</td>
<td>Hold for 180 minutes</td>
</tr>
<tr>
<td>Seg</td>
<td>3</td>
<td>Segment 3</td>
</tr>
<tr>
<td>Type</td>
<td>end</td>
<td>This is the last segment</td>
</tr>
<tr>
<td>End.t</td>
<td>sop</td>
<td>Stop the heat</td>
</tr>
</tbody>
</table>

Example 2:
Heat the sample to 200° over a period of 90 minutes. Then increase the temperature to 300° at a rate of 3° per minute. Hold that temperature until the unit is turned off.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prg</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hb</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Hb.u</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Rmp.u</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>DwL.u</td>
<td>min</td>
<td></td>
</tr>
<tr>
<td>Cyc.n</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Seg</td>
<td>1</td>
<td>Segment 1</td>
</tr>
<tr>
<td>Type</td>
<td>rmp.t</td>
<td>Increase temperature for a specified time</td>
</tr>
<tr>
<td>Tgt</td>
<td>200</td>
<td>Heat to 200°</td>
</tr>
<tr>
<td>Dur</td>
<td>90</td>
<td>Increase temperature for 90 minutes</td>
</tr>
<tr>
<td>Seg</td>
<td>2</td>
<td>Segment 2</td>
</tr>
<tr>
<td>Type</td>
<td>rmp.r</td>
<td>Increase temperature at a specified rate</td>
</tr>
<tr>
<td>Tgt</td>
<td>300</td>
<td>Heat to 300°</td>
</tr>
<tr>
<td>Rate</td>
<td>3</td>
<td>Increase temperature at 3° per minute</td>
</tr>
<tr>
<td>Seg</td>
<td>3</td>
<td>Segment 3</td>
</tr>
<tr>
<td>Type</td>
<td>end</td>
<td>This is the last segment</td>
</tr>
<tr>
<td>End.t</td>
<td>dwell</td>
<td>Hold at the current temperature indefinitely</td>
</tr>
</tbody>
</table>
Appendix

Electrical System

Grounding

Proper grounding protects the equipment operator from the risk of electric shock. The electrical cord provided with this equipment has an equipment grounding conductor and a grounding plug. Observe the following guidelines at all times:

- Always connect the plug to a matching outlet that is properly installed and grounded.

- If an extension cord is necessary, make sure it has three prongs and is compatible with the electrical cord provided with the equipment.

- Do not modify the electrical cord provided with the equipment. If it is not compatible with any available outlets, have a compatible outlet installed by a qualified electrician.

- If the equipment-grounding conductor (solid green or green and yellow) is improperly connected, the operator will be at risk of electrical shock. Never connect it to a live terminal.

- Local codes may require a Ground Fault Interrupt Circuit (GFIC).

- Repair or replace a damaged or worn cord immediately.

- When in doubt, consult a qualified electrician.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is no power to the machine</td>
<td>The main power cord is not plugged in.</td>
<td>Ensure the power cord(s) is firmly into the wall and the machine</td>
</tr>
<tr>
<td></td>
<td>One of the fuses for the main power supply is blown</td>
<td>Check and replace the fuses, see page 21</td>
</tr>
<tr>
<td>Heating / Cooling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The unit is not heating</td>
<td>The heater switch is not on</td>
<td>Turn the heater switch to the on position</td>
</tr>
<tr>
<td></td>
<td>The heater fuse is blown</td>
<td>Replace heater fuse, see page 21</td>
</tr>
<tr>
<td></td>
<td>Temperature overshoot tripped LF Controller</td>
<td>Turn main power off and then back on. Make sure unit is not overheating</td>
</tr>
<tr>
<td>The unit is overheating</td>
<td>The thermocouple is not plugged in</td>
<td>Plug in the thermocouple</td>
</tr>
<tr>
<td></td>
<td>The temperature controller is not programmed correctly</td>
<td>Check the temperature ramp profile in the software or on the Eurotherm temperature controller</td>
</tr>
<tr>
<td></td>
<td>The Eurotherm temperature controller is not working</td>
<td>Replace the temperature control</td>
</tr>
<tr>
<td></td>
<td>The hold light is lit on the temp controller</td>
<td>Press the run/hold button until the light goes off</td>
</tr>
<tr>
<td>The unit is not able to maintain temperature</td>
<td>The coolant water is on</td>
<td>Turn off the cooling water</td>
</tr>
<tr>
<td>or the temperature is cycling uncontrollably</td>
<td>The thermocouple is not plugged in</td>
<td>Plug in the thermocouple</td>
</tr>
<tr>
<td></td>
<td>The thermocouple wires have been reversed</td>
<td>Switch the wires on the thermocouple weeds</td>
</tr>
<tr>
<td>Thermocouple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocouple will not fit into the cell cap</td>
<td>The port is filled with cement</td>
<td>Use a small drill bit to clear the cement blockage</td>
</tr>
<tr>
<td></td>
<td>The thermocouple is bent</td>
<td>Replace the thermocouple</td>
</tr>
<tr>
<td>Symptom</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The unit will not hold pressure</td>
<td>There is a leak at one of the fittings</td>
<td>Trace the tubing and tighten the leaking connection</td>
</tr>
<tr>
<td></td>
<td>The Pump Regulator (black valve) is leaking</td>
<td>Replace the Pump Regulator</td>
</tr>
<tr>
<td></td>
<td>The pressure release valve (PRV) is damaged</td>
<td>Replace the PRV</td>
</tr>
<tr>
<td></td>
<td>The cell o-rings are worn or not seated properly</td>
<td>Disassemble the cell and inspect all o-rings. Discard any that show signs of damage or wear</td>
</tr>
<tr>
<td>The unit will not build pressure</td>
<td>There is a leak at one of the fittings</td>
<td>Trace the tubing and tighten the leaking connection</td>
</tr>
<tr>
<td></td>
<td>The Pump Regulator is leaking</td>
<td>Replace the regulator</td>
</tr>
<tr>
<td></td>
<td>The pump is broken (not cycling, constantly cycling)</td>
<td>Replace the pump</td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is no transit time</td>
<td>The transducers are dirty</td>
<td>Clean the transducers</td>
</tr>
<tr>
<td></td>
<td>Too much couplant has been applied to the transducers</td>
<td>Wipe off the transducers and apply a smaller amount of couplant to the transmitter surface</td>
</tr>
<tr>
<td></td>
<td>The springs do not provide enough force to keep the transducer in contact with the steel surface</td>
<td>Replace the springs</td>
</tr>
<tr>
<td></td>
<td>The transducer cables have been damaged</td>
<td>Replace the transducer cables</td>
</tr>
<tr>
<td></td>
<td>The transducers have exceeded their useful life</td>
<td>Replace the transducers</td>
</tr>
<tr>
<td>Trace lines are missing from the graph</td>
<td>The boxes for each line are unchecked</td>
<td>Check the appropriate boxes</td>
</tr>
<tr>
<td>Symptom</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water is not flowing to the cell</td>
<td>The filter is plugged</td>
<td>Clean the filter (see photo on page 34)</td>
</tr>
<tr>
<td></td>
<td>The fill tubing is plugged</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The fittings and/or cell cap openings are clogged with cement</td>
<td>Check the tubing for obstruction</td>
</tr>
<tr>
<td>Water is leaking from the fitting</td>
<td>Cement has clogged the inner surface of the port</td>
<td>Clean cement out of the port</td>
</tr>
<tr>
<td>Leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The test cell is leaking cement</td>
<td>The o-ring has been damaged</td>
<td>Replace the o-ring</td>
</tr>
<tr>
<td></td>
<td>The o-ring has come out of the groove</td>
<td>Reseat the o-ring</td>
</tr>
<tr>
<td>Weak or intermittent transit time signal during calibration or test</td>
<td>Dirty transducers or transducer cavity</td>
<td>Remove and clean both the transducers and transducer cavity.</td>
</tr>
<tr>
<td></td>
<td>Worn transducer cables and/or BNC connections</td>
<td>Remove and check the cables for kinks and connections for dirty or worn area. Clean or replace as necessary.</td>
</tr>
<tr>
<td></td>
<td>Excessive transducer couplant used</td>
<td>Clean transducers</td>
</tr>
<tr>
<td></td>
<td>Degraded transducers</td>
<td>Replace transducers</td>
</tr>
<tr>
<td></td>
<td>Couplant used not rated for the test temperature</td>
<td>Remove and clean the transducers and reapply the proper couplant</td>
</tr>
</tbody>
</table>
Appendix

Photos

- Fuses
- Cell 1 Transducer
- Cell 2 Transducer
- Printed Circuit Board (#120-50-001)
- Cell 2 Solid State Relay (#120-51-002)
- Cell 1 Model LF Controller (#130-79-21)
- Power Supply (#130-78-003)
- Cell Fill Line
- Check Valve (#120-70-01-056)
- Check Valve (#120-70-01-056)
- Cooling Drain Line
- Pump (#127-00-001)
Appendix

Cell Diagram

- Handle (#120-51-4)
- Top Cap (#120-51-3)
- O-ring (#123-011)
- Cell Body (#120-51-1)
- O-ring (#123-011)
- Base Cap (#120-51-2)
Warranty and Return Policy

Warranty:
OFITE Testing Equipment, Inc. (OFITE) warrants that the products shall be free from liens and defects in title, and shall conform in all respects to the terms of the sales order and the specifications applicable to the products. All products shall be furnished subject to OFITE’s standard manufacturing variations and practices. Unless the warranty period is otherwise extended in writing, the following warranty shall apply: if, at any time prior to twelve (12) months from the date of invoice, the products, or any part thereof, do not conform to these warranties or to the specifications applicable thereto, and OFITE is so notified in writing upon discovery, OFITE shall promptly repair or replace the defective products. Notwithstanding the foregoing, OFITE’s warranty obligations shall not extend to any use by the buyer of the products in conditions more severe than OFITE’s recommendations, nor to any defects which were visually observable by the buyer but which are not promptly brought to OFITE’s attention.

In the event that the buyer has purchased installation and commissioning services on applicable products, the above warranty shall extend for an additional period of twelve (12) months from the date of the original warranty expiration for such products.

In the event that OFITE is requested to provide customized research and development for the buyer, OFITE shall use its best efforts but makes no guarantees to the buyer that any products will be provided.

OFITE makes no other warranties or guarantees to the buyer, either express or implied, and the warranties provided in this clause shall be exclusive of any other warranties including ANY IMPLIED OR STATUTORY WARRANTIES OF FITNESS FOR PURPOSE, MERCHANTABILITY, AND OTHER STATUTORY REMEDIES WHICH ARE WAIVED.

This limited warranty does not cover any losses or damages that occur as a result of:

- Improper installation or maintenance of the products
- Misuse
- Neglect
- Adjustment by non-authorized sources
- Improper environment
- Excessive or inadequate heating or air conditioning or electrical power failures, surges, or other irregularities
- Equipment, products, or material not manufactured by OFITE
- Firmware or hardware that have been modified or altered by a third party
- Consumable parts (bearings, accessories, etc.)

Returns and Repairs:

Items being returned must be carefully packaged to prevent damage in shipment and insured against possible damage or loss. OFITE will not be responsible for equipment damaged due to insufficient packaging.

Any non-defective items returned to OFITE within ninety (90) days of invoice are subject to a 15% restocking fee. Items returned must be received by OFITE in original condition for it to be accepted. Reagents and special order items will not be accepted for return or refund.

OFITE employs experienced personnel to service and repair equipment manufactured by us, as well as other companies. To help expedite the repair process, please include a repair form with all equipment sent to OFITE for repair. Be sure to include your name, company name, phone number, email address, detailed description of work to be done, purchase order number, and a shipping address for returning the equipment. All repairs performed as “repair as needed” are subject to the ninety (90) day limited warranty. All “Certified Repairs” are subject to the twelve (12) month limited warranty.

Returns and potential warranty repairs require a Return Material Authorization (RMA) number. An RMA form is available from your sales or service representative.

Please ship all equipment (with the RMA number for returns or warranty repairs) to the following address:

OFITE Testing Equipment, Inc.
Attn: Repair Department
11302 Steeplecrest Dr.
Houston, TX 77065
USA

OFITE also offers competitive service contracts for repairing and/or maintaining your lab equipment, including equipment from other manufacturers. For more information about our technical support and repair services, please contact techservice@ofite.com.